LANGLANDS DUALITY AND G2 SPECTRAL CURVES

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 7 N ov 2 00 6 Langlands duality and G 2 spectral curves Nigel Hitchin

We first demonstrate how duality for the fibres of the so-called Hitchin fibration works for the Langlands dual groups Sp(2m) and SO(2m + 1). We then show that duality for G2 is implemented by an involution on the base space which takes one fibre to its dual. A formula for the natural cubic form is given and shown to be invariant under the involution.

متن کامل

Gauge Theory and Langlands Duality

In the late 1960s Robert Langlands launched what has become known as the Langlands Program with the ambitious goal of relating deep questions in Number Theory to Harmonic Analysis [L]. In particular, Langlands conjectured that Galois representations and motives can be described in terms of the more tangible data of automorphic representations. A striking application of this general principle is...

متن کامل

Local Langlands Duality and a Duality of Conformal Field Theories

We show that the numerical local Langlands duality for GLn and the T-duality of twodimensional quantum gravity arise from one and the same symmetry principle. The unifying theme is that the local Fourier transform in both its `-adic and complex incarnation gives rise to symmetries of arithmetic and geometric local Langlands parameters.

متن کامل

Affine Algebras, Langlands Duality and Bethe Ansatz

By Langlands duality one usually understands a correspondence between automorphic representations of a reductive group G over the ring of adels of a field F , and homomorphisms from the Galois group Gal(F/F ) to the Langlands dual group GL. It was originally introduced in the case when F is a number field or the field of rational functions on a curve over a finite field [1]. Recently A. Beilins...

متن کامل

Representation theory, geometric Langlands duality and categorification

The representation theory of reductive groups, such as the group GLn of invertible complex matrices, is an important topic, with applications to number theory, algebraic geometry, mathematical physics, and quantum topology. One way to study this representation theory is through the geometric Satake correspondence (also known as geometric Langlands duality). This correspondence relates the geome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mathematics

سال: 2007

ISSN: 0033-5606,1464-3847

DOI: 10.1093/qmath/ham016